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※ Foundations 2a: Introduction to Qubits (1/10)

1.1 A Single Qubit

We are now ready to begin our discussion of quantum states. Let’s start by defining a
quantum bit or qubit which is a quantum state that can model a binary system.

Definition 1.1. A qubit is an object which can be represented using a unit vector with
complex amplitudes 𝛼0 and 𝛼1 as

|𝜓⟩ =
[
𝛼0

𝛼1

]
, (1)

where we say that 𝛼𝑖 is the amplitude corresponding to the event 𝑖 for 𝑖 ∈ {0, 1}. The
notation |𝜓⟩ is read as "ket" "psi".

A unit vector is a vector with length 1. The length of a vector can be found by calculating

|| |𝜓⟩ || =
√
|𝛼0|2 + |𝛼1|2 (2)

Question 1. Which of the following represents a qubit?

|𝜓1⟩ =


1√
3√
2
3

 |𝜓2⟩ =
[

1
2
1
2

]
|𝜓3⟩ =

[
cos𝜃
sin𝜃

]
(3)
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Two of the most important states that we will be using throughout the course are the
standard basis states, defined as

|0⟩ =
[
1
0

]
, |1⟩ =

[
0
1

]
. (4)

These are the vectors corresponding to the two primary states that the system can be in.
We can use linearity of vectors to write equation (1) as a linear combination of the standard
basis states:

When both coefficients are nonzero, we say that the state |𝜓⟩ is in superposition.

We are now equipped with the language to represent the state of a qubit. How do we
interpret this state? A crucial operation in quantum computing is measurement, which,
for our purposes is the way we read out the result of a quantum algorithm. If we measure
|𝜓⟩ in the standard basis,

• with probability |𝛼0|2: we observe the outcome |0⟩, and the qubit collapses to |0⟩.

• with probability |𝛼1|2: we observe the outcome |1⟩, and the qubit collapses to |1⟩.

Similar to the case of the probability vector, observation collapses the state to the one that
we observe. The key difference that makes quantum states special is the fact that there
are physical particles which can truly represent superposition, whereas our discussion
around probability vectors was slightly superficial.

Question 2. Suppose we have the state

|𝜙⟩ =
(

1√
6
− 𝑖

1√
6

)
|0⟩ +

(
1√
3
+ 𝑖

1√
3

)
|1⟩ . (5)

What is the probability of measuring |0⟩, and what is the state after the measurement?
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1.2 Multiple Qubits Sneak Peek

To represent a probability distribution over more than two states, we simply use a proba-
bility vector with the number of states we need.

Question 3. Suppose we had 𝑛 bits available. How many states can we represent?

We can extend our system to multiple qubits the same way we did for probability
vectors. Instead of probabilities for events occurring, each event 𝑥 has an associated
complex number 𝛼𝑥 called its amplitude. As a vector, this would look like

|𝜓⟩ =


𝛼0

𝛼1
...

𝛼2𝑛−1


. (6)

We use the tensor product notation again to combine systems of states. For example,
a system of two qubits in the |0⟩ would be written as

|0⟩ ⊗ |0⟩ =


1
0
0
0


. (7)

Again, we require that the vector is a unit vector:
∑2𝑛−1

𝑖=0 |𝛼𝑖|2 = 1. This ensures that the
squared norm of the amplitudes form a probability distribution.

Question 4. Write down a 2-qubit state where the probability of measuring each qubit is
equal.
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1.3 Transformations

Quantum algorithms have three main components:

1. Store quantum information (statevector)

2. Manipulate quantum information (unitary transformations)

3. Extract some output (quantum measurement)

We’ve seen examples of what 1 and 3 look like, so here we will briefly discuss 2. The
manipulation of quantum information can be thought of as a transformation from one
quantum state to a new quantum state, which can be expressed in vector form as

𝛼0

𝛼1
...

𝛼𝑁−1


→


𝛽0

𝛽1
...

𝛽𝑁−1


. (8)

One requirement we have for these transformations is that they be linear. This means
that if we know what a transformation does for all basis vectors, we will know how any
vector will be transformed. We will review this more carefully in the next section, so here
we explore an example for single qubit states.

Question 5. Suppose we have a linear transformation𝑇 that acts as follows on the standard
basis states:

𝑇 |0⟩ = 𝑇

[
1
0

]
=

[
𝑎0

𝑏0

]
𝑇 |1⟩ = 𝑇

[
0
1

]
=

[
𝑎1

𝑏1

]
(9)

What is the action of 𝑇 on the state |𝜓⟩ := 𝛾0 |0⟩ + 𝛾1 |1⟩?
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※ Foundations 3a: Linear Algebra (1/12)

Hilbert space is a big place.

- Carlton Caves

2.1 Vector Spaces

In linear algebra, we are interested in studying vector spaces.

Definition 2.1 (Vector Space). A vector space is a set of elements that is closed under
linear combinations. A linear combination is a combination of vectors via vector addition
and scalar multiplication.

The primary focus of this course will be the complex vector space of 𝑁 dimensions,
which will be referred to via the short hand C𝑁 . You may also see me (and others) refer
to the "Hilbert space" of quantum states. These are the same thing, as a Hilbert space can
be thought of as a vector space where you can take inner products. Elements of C𝑁 are
vectors of the form

|𝑣⟩ =


𝛼0

𝛼1
...

𝛼𝑁


. (10)

You may be familiar with using ®𝑣 to represent vectors, but here we will use |𝑣⟩ to represent
column vectors.

Question 6. Verify that C𝑁 is indeed a vector space. I.e., are the elements closed under
linear combinations.
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2.2 Span and Linear Independence

Definition 2.2 (Span). The span of a set of 𝑁 vectors {|𝜓1⟩ , . . . , |𝜓𝑁⟩} is the set of all linear
combinations of |𝜓1⟩ , . . . , |𝜓𝑁⟩, i.e. the set of all states that can be written as

𝑐1 |𝜓1⟩ + · · · + 𝑐𝑁 |𝜓𝑁⟩ (11)

for all complex scalars 𝑐1, . . . , 𝑐𝑁 ∈ C.

Question 7. If the following statement is true, prove it. If not, provide a counterexample:

For any pair of length two vectors with real entries |𝑣⟩ , |𝑤⟩, the span of |𝑣⟩ and |𝑤⟩ is
all of R2. In other words, any two pair of vectors spans the entire space.

Definition 2.3 (Linearly Independent Set of Vectors). Let 𝐵 = {|𝜓1⟩ , . . . , |𝜓𝑁⟩} be a set of
vectors in C𝑁 . We say that this set of vectors is linearly independent if

𝑐1 |𝜓1⟩ + · · · + 𝑐𝑁 |𝜓𝑁⟩ = 0 (12)

if and only if 𝑐𝑖 = 0 for all 𝑖.

The above definition is equivalent to saying that no basis vector can be written as a
linear combination of the other basis vectors. Equivalently, we say that a set of vectors is
independent if for any |𝜙⟩ ∈ C𝑁 , there is a unique set of scalars 𝑐1, . . . , 𝑐𝑁 ∈ C𝑁 such that

𝑐1 |𝜓1⟩ + · · · + 𝑐𝑁 |𝜓𝑁⟩ = |𝜙⟩ . (13)
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2.3 Inner Products and Bases

We can equip a vector space with an inner product, which is an operation that maps two
vectors to a scalar value. We will refer to a vector space with an inner product a Hilbert
space.

Definition 2.4 (Inner Product (C𝑁 )). Let |𝜓⟩ =


𝛼1
...

𝛼𝑁

 and |𝜙⟩ =


𝛽1
...

𝛽𝑁

 be elements of

C𝑁 . Then the inner product between |𝜓⟩ and |𝜙⟩ is
∑

𝑖 𝛼
∗
𝑖
𝛽𝑖 . In matrix product form, an

equivalent way to write this is

[
𝛼∗

1 · · · 𝛼∗
𝑁

] 
𝛽1
...

𝛽𝑁

 =
∑
𝑖

𝛼∗
𝑖𝛽𝑖 . (14)

In ket notation, we write the dual of a complex vector |𝜓⟩ as ⟨𝜓| :=
[
𝛼∗

1 · · · 𝛼∗
𝑁

]
, read

as bra psi. Using this notation, the inner product is often written as ⟨𝜓|𝜙⟩. We refer to
the notation of writing vectors with these angle brackets as bra-ket notation.

Question 8. Let |𝜙⟩ =
[
𝑖/
√

3√
2
3

]
and |𝜓⟩ =

[ 1√
2

− 𝑖√
2

]
. Calculate ⟨𝜓|𝜙⟩ and ⟨𝜙|𝜓⟩.

Question 9. What happens when we take the inner product of a vector with itself? Does
it relate to a quantity about vectors you’ve seen before?
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Definition 2.5 (L2-norm). For a vector |𝜓⟩ ∈ C𝑁 , the L2-norm of |𝜓⟩ denoted is

|| |𝜓⟩ || :=
√
⟨𝜓|𝜓⟩. (15)

In this course, when we say norm, we will be referring to the L2-norm of the vector unless
otherwise stated. If the norm of a vector is 1, we say that vector is a unit vector.

Question 10. What is the norm of |𝜓⟩ = (2 + 𝑖) |0⟩ + (3 − 2𝑖) |1⟩?

Definition 2.6 (Orthogonality). Given two vectors |𝜓⟩ and |𝜙⟩ in C𝑁 , we say that they are
orthogonal if ⟨𝜓|𝜙⟩ = 0.

The inner product is a useful metric in defining a notion of similarity between two
vectors. We roughly say a high inner product between two vectors means they have high
overlap, and they point in similar directions.

Definition 2.7 (Orthogonal Basis). If a set of 𝑁 vectors 𝐵 = |𝜓1⟩ , . . . , |𝜓𝑁⟩ in C𝑁 is
mutually orthogonal (i.e., if 𝑖 ≠ 𝑗 then ⟨𝜓𝑖|𝜓 𝑗⟩ = 0), we say that 𝐵 forms an orthogonal
basis for C𝑁 .

Furthermore, if every vector |𝜓𝑖⟩ is also a unit vector, we call it an orthonormal basis.
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Question 11. Write a set of orthonormal basis vectors for R2 besides the standard basis
and draw it on the plane. Find an orthonormal basis for C4 where one of the vectors is
1√
2
(|00⟩ + |11⟩)

2.4 Summary

We have now covered the main foundational mathematical concepts we will be using to
build our understanding of quantum computing. One thing I have really enjoyed about
quantum computing is that it gave me a new way to visualize and understand the above
tools, which you may have felt were quite abstract in your preliminary courses. I hope
this new angle will give you a new appreciation and understanding of these tools. Next
week we will start looking at small quantum systems and get familiar with the circuits we
will use to prove ideas about the limits of information and construct algorithms.
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